ANV - Probability distribution for Castanea sativa
Overview:
Actual Natural Vegetation (ANV): probability of occurrence for the Sweet chestnut in its realized environment for the period 2000 - 2021
Traceability (lineage):
This is an original dataset produced with a machine learning framework which used a combination of point datasets and raster datasets as inputs. Point dataset is a harmonized collection of tree occurrence data, comprising observations from National Forest Inventories (EU-Forest), GBIF and LUCAS. The complete dataset is available on Zenodo. Raster datasets used as input are: harmonized and gapfilled time series of seasonal aggregates of the Landsat GLAD ARD dataset (bands and spectral indices); monthly time series air and surface temperature and precipitation from a reprocessed version of the Copernicus ERA5 dataset; long term averages of bioclimatic variables from CHELSA, tree species distribution maps from the European Atlas of Forest Tree Species; elevation, slope and other elevation-derived metrics; long term monthly averages snow probability and long term monthly averages of cloud fraction from MODIS. For a more comprehensive list refer to Bonannella et al. (2022) (in review, preprint available at: https://doi.org/10.21203/rs.3.rs-1252972/v1 ).
Scientific methodology:
Probability and uncertainty maps were the output of a spatiotemporal ensemble machine learning framework based on stacked regularization. Three base models (random forest, gradient boosted trees and generalized linear models) were first trained on the input dataset and their predictions were used to train an additional model (logistic regression) which provided the final predictions. More details on the whole workflow are available in the listed publication.
Usability:
Probability maps can be used to detect potential forest degradation and compositional change across the time period analyzed. Some possible applications for these topics are explained in the listed publication.
Uncertainty quantification:
Uncertainty is quantified by taking the standard deviation of the probabilities predicted by the three components of the spatiotemporal ensemble model.
Data validation approaches:
Distribution maps were validated using a spatial 5-fold cross validation following the workflow detailed in the listed publication.
Completeness:
The raster files perfectly cover the entire Geo-harmonizer region as defined by the landmask raster dataset available here.
Consistency:
Areas which are outside of the calibration area of the point dataset (Iceland, Norway) usually have high uncertainty values. This is not only a problem of extrapolation but also of poor representation in the feature space available to the model of the conditions that are present in this countries.
Positional accuracy:
The rasters have a spatial resolution of 30m.
Temporal accuracy:
The maps cover the period 2000 - 2020, each map covers a certain number of years according to the following scheme: (1) 2000--2002, (2) 2002--2006, (3) 2006--2010, (4) 2010--2014, (5) 2014--2018 and (6) 2018--2020
Thematic accuracy:
Both probability and uncertainty maps contain values from 0 to 100: in the case of probability maps, they indicate the probability of occurrence of a single individual of the target species, while uncertainty maps indicate the standard deviation of the ensemble model.
Simple
- Date ( Publication )
- NaT
- Identifier
- unknown
- Status
- Under development
- Maintenance and update frequency
- As needed
- Keywords ( Theme )
-
- Vegetation
- Geoharmonizer
- geoharvester
- geodata
- Keywords ( Place )
-
- Europe
- GEMET - INSPIRE themes, version 1.0 ( Theme )
- Use limitation
- None
- Access constraints
- Copyright
- Use constraints
- otherRestictions
- Distance
- 30 m
- Metadata language
- eng
- Character set
- UTF8
- Topic category
-
- Environment
- Begin date
- 2000-2002-01-01
- End date
- 2018-2020-12-31
- Reference system identifier
- EPSG:3035
- Number of dimensions
- 2
- Dimension name
- Row
- Resolution
- 30 m
- Dimension name
- Column
- Resolution
- 30 m
- Cell geometry
- Area
- Distribution format
-
-
GeoTIFF
(
XY
)
-
OGC WMS
(
1.3
)
-
GeoTIFF
(
XY
)
- OnLine resource
-
gh:veg-castaneaXsativa-anvXeml-p-30m-0XX0cm--eumap-epsg3035-v0X2
(
OGC:WMS
)
WMS browse (add eg. "&DIM_YEAR=2019" for year 2019)
- OnLine resource
- https://s3.eu-central-1.wasabisys.com/eumap/veg/veg_castanea.sativa_anv.eml_p_30m_0..0cm_2018..2020_eumap_epsg3035_v0.2.tif ( WWW:DOWNLOAD-1.0-http--download )
- OnLine resource
- https://s3.eu-central-1.wasabisys.com/eumap/veg/veg_castanea.sativa_anv.eml_p_30m_0..0cm_2014..2018_eumap_epsg3035_v0.2.tif ( WWW:DOWNLOAD-1.0-http--download )
- OnLine resource
- https://s3.eu-central-1.wasabisys.com/eumap/veg/veg_castanea.sativa_anv.eml_p_30m_0..0cm_2010..2014_eumap_epsg3035_v0.2.tif ( WWW:DOWNLOAD-1.0-http--download )
- OnLine resource
- https://s3.eu-central-1.wasabisys.com/eumap/veg/veg_castanea.sativa_anv.eml_p_30m_0..0cm_2006..2010_eumap_epsg3035_v0.2.tif ( WWW:DOWNLOAD-1.0-http--download )
- OnLine resource
- https://s3.eu-central-1.wasabisys.com/eumap/veg/veg_castanea.sativa_anv.eml_p_30m_0..0cm_2002..2006_eumap_epsg3035_v0.2.tif ( WWW:DOWNLOAD-1.0-http--download )
- OnLine resource
- https://s3.eu-central-1.wasabisys.com/eumap/veg/veg_castanea.sativa_anv.eml_p_30m_0..0cm_2000..2002_eumap_epsg3035_v0.2.tif ( WWW:DOWNLOAD-1.0-http--download )
- Hierarchy level
- Dataset
Conformance result
- Date
- 2010-12-08
- Explanation
- See specified reference
- Pass
- Yes
- Statement
- derived from XY
gmd:MD_Metadata
- File identifier
- 4c430057-6c29-4984-be3e-7a6a63b52f32 XML
- Metadata language
- en
- Character set
- UTF8
- Date stamp
- 2021-01-14T10:37:57
- Metadata standard name
- ISO 19115:2003/19139
- Metadata standard version
- 1.0
Citation proposal
Carmelo Bonannella () (NaT) . ANV - Probability distribution for Castanea sativa.
https://data.opendatascience.eu/geonetwork/srv/api/records/4c430057-6c29-4984-be3e-7a6a63b52f32