Keyword

Europe

105 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 105
  • Areas planted with vines, vineyard parcels covering >50% and determining the land use of the area.

  • 421: Vegetated low-lying areas in the coastal zone, above the high-tide line, susceptible to flooding by seawater. Often in the process of being filled in by coastal mud and sand sediments, gradually being colonized by halophilic plants. Salt marshes are in most cases directly connected to intertidal areas and may successively develop from them in the long-term. Salt-pans for extraction of salt from salt water by evaporation, active or in process of abandonment. Sections of salt marsh exploited for the production of salt, clearly distinguishable from the rest of the marsh by their parcellation and embankment systems. Coastal zone under tidal influence between open sea and land, which is flooded by sea water regularly twice a day in a ca. 12 hours cycle. Area between the average lowest and highest sea water level at low tide and high tide. Generally non-vegetated expanses of mud, sand or rock lying between high and low water marks. The seaward boundary of intertidal flats may underlay constant change in geographical extent due to littoral morphodynamics. Range of water level between low tide and high tide may vary between decimeters and several meters in height.

  • osm: Buildings according to OSM polygons and the Copernicus impervious build-up layer (2018), aggregated and rasterized first to 10m spatial resolution and after downsampled to 30m by spatial average.

  • Overview: Actual Natural Vegetation (ANV): probability of occurrence for the Silver fir in its realized environment for the period 2000 - 2020 Traceability (lineage): This is an original dataset produced with a machine learning framework which used a combination of point datasets and raster datasets as inputs. Point dataset is a harmonized collection of tree occurrence data, comprising observations from National Forest Inventories (EU-Forest), GBIF and LUCAS. The complete dataset is available on Zenodo. Raster datasets used as input are: harmonized and gapfilled time series of seasonal aggregates of the Landsat GLAD ARD dataset (bands and spectral indices); monthly time series air and surface temperature and precipitation from a reprocessed version of the Copernicus ERA5 dataset; long term averages of bioclimatic variables from CHELSA, tree species distribution maps from the European Atlas of Forest Tree Species; elevation, slope and other elevation-derived metrics; long term monthly averages snow probability and long term monthly averages of cloud fraction from MODIS. For a more comprehensive list refer to Bonannella et al. (2022) (in review, preprint available at: https://doi.org/10.21203/rs.3.rs-1252972/v1). Scientific methodology: Probability and uncertainty maps were the output of a spatiotemporal ensemble machine learning framework based on stacked regularization. Three base models (random forest, gradient boosted trees and generalized linear models) were first trained on the input dataset and their predictions were used to train an additional model (logistic regression) which provided the final predictions. More details on the whole workflow are available in the listed publication. Usability: Probability maps can be used to detect potential forest degradation and compositional change across the time period analyzed. Some possible applications for these topics are explained in the listed publication. Uncertainty quantification: Uncertainty is quantified by taking the standard deviation of the probabilities predicted by the three components of the spatiotemporal ensemble model. Data validation approaches: Distribution maps were validated using a spatial 5-fold cross validation following the workflow detailed in the listed publication. Completeness: The raster files perfectly cover the entire Geo-harmonizer region as defined by the landmask raster dataset available here. Consistency: Areas which are outside of the calibration area of the point dataset (Iceland, Norway) usually have high uncertainty values. This is not only a problem of extrapolation but also of poor representation in the feature space available to the model of the conditions that are present in this countries. Positional accuracy: The rasters have a spatial resolution of 30m. Temporal accuracy: The maps cover the period 2000 - 2020, each map covers a certain number of years according to the following scheme: (1) 2000--2002, (2) 2002--2006, (3) 2006--2010, (4) 2010--2014, (5) 2014--2018 and (6) 2018--2020 Thematic accuracy: Both probability and uncertainty maps contain values from 0 to 100: in the case of probability maps, they indicate the probability of occurrence of a single individual of the target species, while uncertainty maps indicate the standard deviation of the ensemble model.

  • Overview: Actual Natural Vegetation (ANV): probability of occurrence for the Sweet cherry in its realized environment for the period 2000 - 2030 Traceability (lineage): This is an original dataset produced with a machine learning framework which used a combination of point datasets and raster datasets as inputs. Point dataset is a harmonized collection of tree occurrence data, comprising observations from National Forest Inventories (EU-Forest), GBIF and LUCAS. The complete dataset is available on Zenodo. Raster datasets used as input are: harmonized and gapfilled time series of seasonal aggregates of the Landsat GLAD ARD dataset (bands and spectral indices); monthly time series air and surface temperature and precipitation from a reprocessed version of the Copernicus ERA5 dataset; long term averages of bioclimatic variables from CHELSA, tree species distribution maps from the European Atlas of Forest Tree Species; elevation, slope and other elevation-derived metrics; long term monthly averages snow probability and long term monthly averages of cloud fraction from MODIS. For a more comprehensive list refer to Bonannella et al. (2022) (in review, preprint available at: https://doi.org/10.21203/rs.3.rs-1252972/v1). Scientific methodology: Probability and uncertainty maps were the output of a spatiotemporal ensemble machine learning framework based on stacked regularization. Three base models (random forest, gradient boosted trees and generalized linear models) were first trained on the input dataset and their predictions were used to train an additional model (logistic regression) which provided the final predictions. More details on the whole workflow are available in the listed publication. Usability: Probability maps can be used to detect potential forest degradation and compositional change across the time period analyzed. Some possible applications for these topics are explained in the listed publication. Uncertainty quantification: Uncertainty is quantified by taking the standard deviation of the probabilities predicted by the three components of the spatiotemporal ensemble model. Data validation approaches: Distribution maps were validated using a spatial 5-fold cross validation following the workflow detailed in the listed publication. Completeness: The raster files perfectly cover the entire Geo-harmonizer region as defined by the landmask raster dataset available here. Consistency: Areas which are outside of the calibration area of the point dataset (Iceland, Norway) usually have high uncertainty values. This is not only a problem of extrapolation but also of poor representation in the feature space available to the model of the conditions that are present in this countries. Positional accuracy: The rasters have a spatial resolution of 30m. Temporal accuracy: The maps cover the period 2000 - 2020, each map covers a certain number of years according to the following scheme: (1) 2000--2002, (2) 2002--2006, (3) 2006--2010, (4) 2010--2014, (5) 2014--2018 and (6) 2018--2020 Thematic accuracy: Both probability and uncertainty maps contain values from 0 to 100: in the case of probability maps, they indicate the probability of occurrence of a single individual of the target species, while uncertainty maps indicate the standard deviation of the ensemble model.

  • The Land Cover Map of Europe 2017 is a product resulting from the Phase 2 of the S2GLC project. The final map has been produced on the CREODIAS platform with algorithms and software developed by CBK PAN. Classification of over 15 000 Sentinel-2 images required high level of automation that was assured by the developed software. The legend of the resulting Land Cover Map of Europe 2017 consists of 13 land cover classes. The pixel size of the map equals 10 m, which corresponds to the highest spatial resolution of Sentinel-2 imagery. Its overall accuracy was estimated to be at the level of 86% using approximately 52 000 validation samples distributed across Europe. Related publication: https://doi.org/10.3390/rs12213523

  • 222: Cultivated parcels planted with fruit trees and shrubs, intended for fruit production, including nuts. The planting pattern can be by single or mixed fruit species, both in association with permanently grassy surfaces.

  • Overview: osm: Harbours rasterized from OSM landuse polygons, first to 10m spatial resolution and after downsampled to 30m by spatial average. Traceability (lineage): The class-wise layers of this dataset were extracted from OpenStreetMap data downloaded from geofabrik.de and aggregated based on labels assigned to the volunteered geographical information objects. Scientific methodology: nan Usability: The extracted classes can be used to preprocess training data (as detailed in Witjes et al., 2022 (in review, preprint available at https://doi.org/10.21203/rs.3.rs-561383/v3 ). Users are advised to remember the potential inconsistencies in volunteered geographical information, however: Some regions of Europe have been less consistently mapped in OpenStreetMap. This may introduce bias in any subsequent modelling. Uncertainty quantification: nan Data validation approaches: This dataset has not been validated Completeness: Volunteered geographical information often more complete in regions with more active contributors. It is likely that this dataset contains many omission errors in regions of Europe where OpenStreetMap is used less intensively. Consistency: Volunteered geographical information often more complete in regions with more active contributors. It is likely that this dataset contains many omission errors in regions of Europe where OpenStreetMap is used less intensively. Positional accuracy: The rasters have a spatial resolution of 30m Temporal accuracy: The maps are based on an extract from 2020. Thematic accuracy: The 30m pixels of each OSM extract map have values ranging from 0-100, indicating the density aggregated from 10m pixels where rasterized objects burned the value 100 in a 0-value raster.

  • Overview: Potential Natural Vegetation (PNV): potential probability of occurrence for the Olive tree from 2018 to 2020 Traceability (lineage): This is an original dataset produced with a machine learning framework which used a combination of point datasets and raster datasets as inputs. Point dataset is a harmonized collection of tree occurrence data, comprising observations from National Forest Inventories (EU-Forest), GBIF and LUCAS. The complete dataset is available on Zenodo. Raster datasets used as input are: monthly time series air and surface temperature and precipitation from a reprocessed version of the Copernicus ERA5 dataset; long term averages of bioclimatic variables from CHELSA; elevation, slope and other elevation-derived metrics and long term monthly averages snow probability. For a more comprehensive list refer to Bonannella et al. (2022) (in review, preprint available at: https://doi.org/10.21203/rs.3.rs-1252972/v1). Scientific methodology: Probability and uncertainty maps were the output of a spatiotemporal ensemble machine learning framework based on stacked regularization. Three base models (random forest, gradient boosted trees and generalized linear models) were first trained on the input dataset and their predictions were used to train an additional model (logistic regression) which provided the final predictions. More details on the whole workflow are available in the listed publication. Usability: Probability maps are particularly useful when compared with existing products of potential distribution of species or when combined with maps of realized distribution: gaps in potential and realized distribution can be identified and used as information for future programs of tree planting or forest restoration. Uncertainty quantification: Uncertainty is quantified by taking the standard deviation of the probabilities predicted by the three components of the spatiotemporal ensemble model. Data validation approaches: Distribution maps were validated using a spatial 5-fold cross validation following the workflow detailed in the listed publication. Completeness: The raster files perfectly cover the entire Geo-harmonizer region as defined by the landmask raster dataset available here. Consistency: Areas which are outside of the calibration area of the point dataset (Iceland, Norway) usually have high uncertainty values. This is not only a problem of extrapolation but also of poor representation in the feature space available to the model of the conditions that are present in this countries. Positional accuracy: The rasters have a spatial resolution of 30m. Temporal accuracy: The maps cover the period 2018 - 2020 Thematic accuracy: Both probability and uncertainty maps contain values from 0 to 100: in the case of probability maps, they indicate the probability of occurrence of a single individual of the target species, while uncertainty maps indicate the standard deviation of the ensemble model.

  • Overview: Aerosol Optical Depth (AOD) at 550 nm Traceability (lineage): The data source used to generate this dataset are daily Aerosol Optical Depth (AOD) at 550 nm with 1 km spatial resolution from the MCD19A2 product of MODIS collection 6 for the years 2018-2020 (https://lpdaac.usgs.gov/products/mcd19a2v006/), daily modeled AOD at 550 nm with 80 km spatial resolution from Copernicus Atmosphere Monitoring Service (CAMS) for the years 2018-2020, and elevations from the worldwide digital surface model of the Japan Aerospace Exploration Agency (JAXA) (https://www.eorc.jaxa.jp/ALOS/). NASA’s Aerosols Robotic Network (AERONET) ground measurements were used to validate this dataset. Scientific methodology: The outcome of the scheme was a geo-harmonized atmospheric dataset for aerosol optical depth (GHADA) at 550 nm with 1 km spatial resolution and full coverage over Europe. Daily AOD maps were created by training an optimized space-time extra trees model for each year 2018-2020. The results have shown that our trained models reach a prediction accuracy up to 95% when predicting the missing values in the MODIS MCD19A2 product. Usability: AOD maps can be used for future air quality studies concerning Europe. Uncertainty quantification: nan Data validation approaches: GHADA was validated using AOD measurements from AERONET stations across Europe. Completeness: The raster files cover the entire Geo-harmonizer region. Consistency: nan Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for 3 years, 2018-2020. Thematic accuracy: nan