Type
 

dataset

146 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 146
  • Regional model ICON-D2 The DWD's ICON-D2 model is a forecast model which is operated for the very-short range up to +27 hours (+45 hours for the 03 UTC run). Due to its fine mesh size, the ICON-D2 especially provides for improved forecasts of hazardous weather conditions, e.g. weather situations with high-level moisture convection (super and multi-cell thunderstorms, squall lines, mesoscale convective complexes) and weather events that are influenced by fine-scale topographic effects (ground fog, Föhn winds, intense downslope winds, flash floods). The model area of ICON-D2 covers the whole German territory, Benelux, Switzerland, Austria and parts of the other neighbouring countries at a horizontal resolution of 2.2 km. In the vertical, the model defines 65 atmosphere levels. The fairly short forecast periods make perfect sense because of the purpose of ICON-D2 (and its small model area). Based on model runs at 00, 06, 09, 12, 15, 18 and 21 UTC, ICON-D2 provides new 27-hour forecasts every 3 hours. The model run at 03 UTC even covers a forecast period of 45 hours. The ICON-D2 forecast data for each weather element are made available in standard packages at our free DWD Open Data Server, both on a rotated grid and on a regular grid. Regional ensemble forecast model ICON-D2 EPS The ensemble forecasting system ICON-D2 EPS is based on the DWD's numerical weather forecast model ICON-D2 and currently includes 20 ensemble members. All ensemble members are calculated at the same horizontal grid spacing as the operational configuration of ICON-D2 (2.2 km). Like ICON-D2, the ICON-D2 EPS ensemble system provides forecasts up to +27 hours for the same model area (up to +45 hours based on the 03 UTC run). For generating the ensemble members, some of the features of the forecasting system are changed. The method currently used to generate the ensemble members involves varying the - lateral boundary conditions - initial state - soil moisture - and model physics. For varying the lateral boundary conditions and the initial state, forecasts from various global models are used. The ICON-D2 EPS is provided on the DWD Open Data Server in the native triangular grid. Note: All previously COSMO-D2 based aviation weather products have been migrated to ICON-D2 on 10.02.2021. However, the familiar design of these products remains unchanged.

  • 131: Open-pit extraction sites of construction materials (sandpits, quarries) or other minerals (open-cast mines). Includes flooded mining pits.

  • Overview: Actual Natural Vegetation (ANV): probability of occurrence for the Aleppo pine in its realized environment for the period 2000 - 2026 Traceability (lineage): This is an original dataset produced with a machine learning framework which used a combination of point datasets and raster datasets as inputs. Point dataset is a harmonized collection of tree occurrence data, comprising observations from National Forest Inventories (EU-Forest), GBIF and LUCAS. The complete dataset is available on Zenodo. Raster datasets used as input are: harmonized and gapfilled time series of seasonal aggregates of the Landsat GLAD ARD dataset (bands and spectral indices); monthly time series air and surface temperature and precipitation from a reprocessed version of the Copernicus ERA5 dataset; long term averages of bioclimatic variables from CHELSA, tree species distribution maps from the European Atlas of Forest Tree Species; elevation, slope and other elevation-derived metrics; long term monthly averages snow probability and long term monthly averages of cloud fraction from MODIS. For a more comprehensive list refer to Bonannella et al. (2022) (in review, preprint available at: https://doi.org/10.21203/rs.3.rs-1252972/v1). Scientific methodology: Probability and uncertainty maps were the output of a spatiotemporal ensemble machine learning framework based on stacked regularization. Three base models (random forest, gradient boosted trees and generalized linear models) were first trained on the input dataset and their predictions were used to train an additional model (logistic regression) which provided the final predictions. More details on the whole workflow are available in the listed publication. Usability: Probability maps can be used to detect potential forest degradation and compositional change across the time period analyzed. Some possible applications for these topics are explained in the listed publication. Uncertainty quantification: Uncertainty is quantified by taking the standard deviation of the probabilities predicted by the three components of the spatiotemporal ensemble model. Data validation approaches: Distribution maps were validated using a spatial 5-fold cross validation following the workflow detailed in the listed publication. Completeness: The raster files perfectly cover the entire Geo-harmonizer region as defined by the landmask raster dataset available here. Consistency: Areas which are outside of the calibration area of the point dataset (Iceland, Norway) usually have high uncertainty values. This is not only a problem of extrapolation but also of poor representation in the feature space available to the model of the conditions that are present in this countries. Positional accuracy: The rasters have a spatial resolution of 30m. Temporal accuracy: The maps cover the period 2000 - 2020, each map covers a certain number of years according to the following scheme: (1) 2000--2002, (2) 2002--2006, (3) 2006--2010, (4) 2010--2014, (5) 2014--2018 and (6) 2018--2020 Thematic accuracy: Both probability and uncertainty maps contain values from 0 to 100: in the case of probability maps, they indicate the probability of occurrence of a single individual of the target species, while uncertainty maps indicate the standard deviation of the ensemble model.

  • 122: Motorways and railways, including associated installations (stations, platforms, embankments, linear greenery narrower than 100 m). Minimum width for inclusion: 100 m. The general requirement of 100 m delineation accuracy is not sufficient in mapping 122. The tolerable shift in delineation is maximum 50 m. In delineating 122 a maximum 15-20% exaggeration of width is allowed, meaning that real width of the road including associated land should be at least 80 m to be included in CLC. In such cases the exaggerated width should be as close as possible to 100 m.

  • Northern Italy Land Surface Temperature 1km daily Celsius gap-filled datasetLST daily avg, 2010 - 2018, reconstructed format: GRASS GIS raster format ZLIB compressed stored as a GRASS GIS 7 location/mapset Projection: EU LAEA (EPSG:3035)Reference: Metz, M.; Andreo, V.; Neteler, M. A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data. Remote Sens. 2017, 9, 1333. https://doi.org/10.3390/rs9121333

  • This change map was produced as an intermediate result in the course of the project incora (Inwertsetzung von Copernicus-Daten für die Raumbeobachtung, mFUND Förderkennzeichen: 19F2079C) in cooperation with ILS (Institut für Landes- und Stadtentwicklungsforschung gGmbH) and BBSR (Bundesinstitut für Bau-, Stadt- und Raumforschung) funded by BMVI (Federal Ministry of Transport and Digital Infrastructure). The goal of incora is an analysis of settlement and infrastructure dynamics in Germany based on Copernicus Sentinel data. The map indicates land cover changes between the years 2016 and 2019. It is a difference map from two classifications based on Sentinel-2 MAJA data (MAJA L3A-WASP: https://geoservice.dlr.de/web/maps/sentinel2:l3a:wasp; DLR (2019): Sentinel-2 MSI - Level 2A (MAJA-Tiles)- Germany). More information on the two basis classifications can be found here: https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/db130a09-fc2e-421d-95e2-1575e7c4b45c https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/36512b46-f3aa-4aa4-8281-7584ec46c813 To keep only significant changes in the change detection map, the following postprocessing steps are applied to the initial difference raster: - Modefilter (3x3) to eliminate isolated pixels and edge effects - Information gain in a 4x4 window compares class distribution within the window from the two timesteps. High values indicate that the class distribution in the window has changed, and thus a change is likely. Gain ranges from 0 to 1, all changes < 0.5 are omitted. - Change areas < 1ha are removed The resulting map has the following nomenclature: 0: No Change 1: Change from low vegetation to forest 2: Change from water to forest 3: Change from built-up to forest 4: Change from bare soil to forest 5: Change from agriculture to forest 6: Change from forest to low vegetation 7: Change from water to low vegetation 8: Change from built-up to low vegetation 9: Change from bare soil to low vegetation 10: Change from agriculture to low vegetation 11: Change from forest to water 12: Change from low vegetation to water 13: Change from built-up to water 14: Change from bare soil to water 15: Change from agriculture to water 16: Change from forest to built-up 17: Change from low vegetation to built-up 18: Change from water to built-up 19: Change from bare soil to built-up 20: Change from agriculture to built-up 21: Change from forest to bare soil 22: Change from low vegetation to bare soil 23: Change from water to bare soil 24: Change from built-up to bare soil 25: Change from agriculture to bare soil 26: Change from forest to agriculture 27: Change from low vegetation to agriculture 28: Change from water to agriculture 29: Change from built-up to agriculture 30: Change from bare soil to agriculture - Contains modified Copernicus Sentinel data (2016/2019), processed by mundialis Incora report with details on methods and results: pending

  • Overview: Actual Natural Vegetation (ANV): probability of occurrence for the Silver fir in its realized environment for the period 2000 - 2020 Traceability (lineage): This is an original dataset produced with a machine learning framework which used a combination of point datasets and raster datasets as inputs. Point dataset is a harmonized collection of tree occurrence data, comprising observations from National Forest Inventories (EU-Forest), GBIF and LUCAS. The complete dataset is available on Zenodo. Raster datasets used as input are: harmonized and gapfilled time series of seasonal aggregates of the Landsat GLAD ARD dataset (bands and spectral indices); monthly time series air and surface temperature and precipitation from a reprocessed version of the Copernicus ERA5 dataset; long term averages of bioclimatic variables from CHELSA, tree species distribution maps from the European Atlas of Forest Tree Species; elevation, slope and other elevation-derived metrics; long term monthly averages snow probability and long term monthly averages of cloud fraction from MODIS. For a more comprehensive list refer to Bonannella et al. (2022) (in review, preprint available at: https://doi.org/10.21203/rs.3.rs-1252972/v1). Scientific methodology: Probability and uncertainty maps were the output of a spatiotemporal ensemble machine learning framework based on stacked regularization. Three base models (random forest, gradient boosted trees and generalized linear models) were first trained on the input dataset and their predictions were used to train an additional model (logistic regression) which provided the final predictions. More details on the whole workflow are available in the listed publication. Usability: Probability maps can be used to detect potential forest degradation and compositional change across the time period analyzed. Some possible applications for these topics are explained in the listed publication. Uncertainty quantification: Uncertainty is quantified by taking the standard deviation of the probabilities predicted by the three components of the spatiotemporal ensemble model. Data validation approaches: Distribution maps were validated using a spatial 5-fold cross validation following the workflow detailed in the listed publication. Completeness: The raster files perfectly cover the entire Geo-harmonizer region as defined by the landmask raster dataset available here. Consistency: Areas which are outside of the calibration area of the point dataset (Iceland, Norway) usually have high uncertainty values. This is not only a problem of extrapolation but also of poor representation in the feature space available to the model of the conditions that are present in this countries. Positional accuracy: The rasters have a spatial resolution of 30m. Temporal accuracy: The maps cover the period 2000 - 2020, each map covers a certain number of years according to the following scheme: (1) 2000--2002, (2) 2002--2006, (3) 2006--2010, (4) 2010--2014, (5) 2014--2018 and (6) 2018--2020 Thematic accuracy: Both probability and uncertainty maps contain values from 0 to 100: in the case of probability maps, they indicate the probability of occurrence of a single individual of the target species, while uncertainty maps indicate the standard deviation of the ensemble model.

  • Overview: Actual Natural Vegetation (ANV): probability of occurrence for the Austrian pine in its realized environment for the period 2000 - 2027 Traceability (lineage): This is an original dataset produced with a machine learning framework which used a combination of point datasets and raster datasets as inputs. Point dataset is a harmonized collection of tree occurrence data, comprising observations from National Forest Inventories (EU-Forest), GBIF and LUCAS. The complete dataset is available on Zenodo. Raster datasets used as input are: harmonized and gapfilled time series of seasonal aggregates of the Landsat GLAD ARD dataset (bands and spectral indices); monthly time series air and surface temperature and precipitation from a reprocessed version of the Copernicus ERA5 dataset; long term averages of bioclimatic variables from CHELSA, tree species distribution maps from the European Atlas of Forest Tree Species; elevation, slope and other elevation-derived metrics; long term monthly averages snow probability and long term monthly averages of cloud fraction from MODIS. For a more comprehensive list refer to Bonannella et al. (2022) (in review, preprint available at: https://doi.org/10.21203/rs.3.rs-1252972/v1). Scientific methodology: Probability and uncertainty maps were the output of a spatiotemporal ensemble machine learning framework based on stacked regularization. Three base models (random forest, gradient boosted trees and generalized linear models) were first trained on the input dataset and their predictions were used to train an additional model (logistic regression) which provided the final predictions. More details on the whole workflow are available in the listed publication. Usability: Probability maps can be used to detect potential forest degradation and compositional change across the time period analyzed. Some possible applications for these topics are explained in the listed publication. Uncertainty quantification: Uncertainty is quantified by taking the standard deviation of the probabilities predicted by the three components of the spatiotemporal ensemble model. Data validation approaches: Distribution maps were validated using a spatial 5-fold cross validation following the workflow detailed in the listed publication. Completeness: The raster files perfectly cover the entire Geo-harmonizer region as defined by the landmask raster dataset available here. Consistency: Areas which are outside of the calibration area of the point dataset (Iceland, Norway) usually have high uncertainty values. This is not only a problem of extrapolation but also of poor representation in the feature space available to the model of the conditions that are present in this countries. Positional accuracy: The rasters have a spatial resolution of 30m. Temporal accuracy: The maps cover the period 2000 - 2020, each map covers a certain number of years according to the following scheme: (1) 2000--2002, (2) 2002--2006, (3) 2006--2010, (4) 2010--2014, (5) 2014--2018 and (6) 2018--2020 Thematic accuracy: Both probability and uncertainty maps contain values from 0 to 100: in the case of probability maps, they indicate the probability of occurrence of a single individual of the target species, while uncertainty maps indicate the standard deviation of the ensemble model.

  • osm: Industrial building aggregated and rasterized from OSM polygons, first to 10m spatial resolution and after downsampled to 30m by spatial average.

  • Harmonized tree species occurrence points (field observations) for Europe is a harmonized collection of existing data from GBIF, the EU-Forest project and the LUCAS survey. It has about 3 million observations and is supplemented by variables (e.g. location accuracy, land cover type, canopy height, etc.) which enable precise filtering for specific user applications. The data can be obtained from: https://doi.org/10.5281/zenodo.4061816